SADABS-2014/2 - Bruker AXS area detector scaling and absorption correction -------------------------------------------------------------------------- Equivalent reflections defined by point group 2 for scaling Equivalent reflections defined by point group 2 for error model Reading file cu_marc002_0m.raw Mean and maximum errors in direction cosine check function = 0.000 0.004 The mean error should not exceed 0.005, and is usually caused by matrix changes during data processing. Approximate wavelength, cell and maximum 2-theta (from cosines etc.): 1.54183 6.829 7.362 18.337 90.007 100.540 90.022 149.53 ============================================================================== PART 1 - Refinement of parameters to model systematic errors Thresholds should now be specified for excluding reflections from the parameter refinement; these reflections may still be corrected and included in the final output .hkl file 20316 Reflections of which 3721 unique; 8.37 data per frame Redundancy: 1 2 3 4 5 6 7 8 9+ Number of groups: 178 382 667 636 443 329 227 204 655 Mean(I/sigma): -inf 0 1 2 3 5 10 15 20 +inf Number of groups: 13 161 190 238 544 1072 590 271 642 Settings for parameter refinement: Maximum resolution = 0.1000 A (Intensity/sigma) threshold = 1.500 Restraint esd for equal adjacent scale factors = 0.0050 Maximum odd and even orders for spherical harmonics = 3 6 18078 Reflections employed for parameter determination Effective data to parameter ratio = 5.97 wR2(int) = 0.1205 (selected reflections only, before parameter refinement) Cycle wR2(incid) wR2(diffr) Mean wt. 1 0.1068 0.0944 0.7359 2 0.0891 0.0862 0.7588 3 0.0842 0.0830 0.7657 4 0.0819 0.0813 0.7693 5 0.0805 0.0802 0.7717 6 0.0795 0.0794 0.7732 7 0.0789 0.0789 0.7743 8 0.0785 0.0785 0.7750 9 0.0782 0.0783 0.7756 10 0.0780 0.0780 0.7760 11 0.0778 0.0778 0.7764 12 0.0776 0.0777 0.7767 13 0.0775 0.0776 0.7769 14 0.0774 0.0775 0.7771 15 0.0773 0.0774 0.7773 16 0.0772 0.0773 0.7774 17 0.0772 0.0773 0.7775 18 0.0771 0.0772 0.7778 19 0.0770 0.0771 0.7779 20 0.0770 0.0771 0.7780 21 0.0769 0.0771 0.7781 22 0.0769 0.0770 0.7782 23 0.0769 0.0770 0.7783 24 0.0769 0.0770 0.7783 25 0.0768 0.0770 0.7784 26 0.0768 0.0769 0.7784 27 0.0768 0.0769 0.7785 28 0.0768 0.0769 0.7785 29 0.0768 0.0769 0.7785 30 0.0768 0.0769 0.7786 31 0.0767 0.0769 0.7787 32 0.0767 0.0769 0.7788 33 0.0767 0.0769 0.7788 34 0.0767 0.0769 0.7788 35 0.0767 0.0769 0.7789 36 0.0767 0.0768 0.7789 37 0.0767 0.0768 0.7789 38 0.0767 0.0768 0.7789 39 0.0767 0.0768 0.7789 40 0.0767 0.0768 0.7789 41 0.0767 0.0768 0.7791 42 0.0767 0.0768 0.7791 43 0.0767 0.0768 0.7791 44 0.0767 0.0768 0.7791 45 0.0767 0.0768 0.7791 46 0.0767 0.0768 0.7791 47 0.0766 0.0768 0.7791 48 0.0766 0.0768 0.7791 49 0.0766 0.0768 0.7792 50 0.0766 0.0768 0.7792 wR2(int) = 0.0768 (selected reflections only, after parameter refinement) ============================================================================== PART 2 - Reject outliers and establish error model Rejected reflections are ignored in the statistics and Postscript plots (except the detector diagnostics) and in the output .hkl file Before applying rejections there are: 20316 total and 3721 unique reflections. Reflections rejected for which |I-|/su > 4.00 Where: su^2 = sigma(I)^2 + ( 0.04000 )^2 (sigma(I) from SAINT) 19617 total and 3717 unique reflections left after |I-|/su test su^2 = [K*sigma(I)]^2 + [g]^2 where sigma(I) is from SAINT Error model 5: refine all K and overall g Run 2theta R(int) Incid. factors Diffr. factors K g I/s(lim) Total I>2sig(I) 1 -60.5 0.0544 0.546 - 0.683 0.892 - 1.414 0.971 0.0568 17.6 721 707 2 -60.5 0.0406 0.715 - 0.888 0.892 - 1.161 0.773 0.0568 17.6 730 716 3 118.0 0.0955 0.508 - 0.646 0.893 - 1.431 1.094 0.0568 17.6 733 641 4 118.0 0.1118 0.635 - 0.807 0.897 - 1.413 1.144 0.0568 17.6 728 598 5 118.0 0.1541 0.668 - 0.906 0.891 - 1.443 1.358 0.0568 17.6 696 502 6 -0.1 0.0475 0.785 - 0.899 0.892 - 1.098 2.021 0.0568 17.6 223 217 7 103.0 0.0893 0.669 - 0.850 0.892 - 1.414 1.203 0.0568 17.6 724 609 8 118.0 0.1263 0.620 - 0.763 0.943 - 1.414 1.269 0.0568 17.6 731 580 9 88.0 0.0589 0.705 - 0.970 0.891 - 1.445 0.923 0.0568 17.6 841 785 10 118.0 0.0908 0.807 - 0.970 0.892 - 1.093 1.170 0.0568 17.6 620 520 11 118.0 0.1148 0.675 - 0.877 0.891 - 1.411 1.177 0.0568 17.6 738 616 12 -60.5 0.0397 0.751 - 0.916 0.891 - 1.426 0.655 0.0568 17.6 726 705 13 118.0 0.1287 0.677 - 0.864 0.940 - 1.415 1.272 0.0568 17.6 726 550 14 -60.5 0.0442 0.861 - 1.007 0.892 - 1.205 0.880 0.0568 17.6 722 708 15 118.0 0.1265 0.700 - 0.882 0.891 - 1.429 1.391 0.0568 17.6 687 502 16 118.0 0.1275 0.722 - 0.926 0.892 - 1.412 1.287 0.0568 17.6 715 521 17 118.0 0.1495 0.704 - 0.861 0.941 - 1.423 1.543 0.0568 17.6 697 492 18 118.0 0.1082 0.717 - 0.907 0.892 - 1.415 1.298 0.0568 17.6 734 572 19 118.0 0.1056 0.634 - 0.835 0.891 - 1.445 1.117 0.0568 17.6 729 613 20 -40.1 0.0493 0.666 - 0.848 0.892 - 1.440 1.301 0.0568 17.6 579 566 21 118.0 0.1562 0.689 - 0.907 0.902 - 1.444 1.513 0.0568 17.6 693 471 22 118.0 0.1073 0.631 - 0.758 0.896 - 1.421 1.344 0.0568 17.6 708 582 23 103.0 0.0817 0.781 - 1.011 0.891 - 1.117 1.093 0.0568 17.6 804 693 24 118.0 0.1235 0.652 - 0.781 0.943 - 1.439 1.259 0.0568 17.6 740 605 25 118.0 0.1324 0.776 - 0.980 0.891 - 1.137 1.389 0.0568 17.6 703 516 26 118.0 0.1149 0.683 - 0.939 0.893 - 1.403 1.161 0.0568 17.6 737 561 27 118.0 0.1026 0.801 - 0.976 0.891 - 1.100 1.029 0.0568 17.6 737 627 28 118.0 0.1540 0.686 - 0.898 0.911 - 1.441 1.446 0.0568 17.6 695 474 I/s(lim) is the limiting value of I/sigma(I) for a reflection of infinite intensity, and may be used as a criterion for data quality (Diederichs(2010), Acta Cryst, D66, 733-740. The above statistics are based on all non-rejected data, ignoring reflections without equivalents when estimating R(int) and K. ============================================================================== PART 3 - Output Postscript diagnostics and corrected data Diagnostic plots written to Postscript file cu_marc002.eps Reflections not merged 19617 Corrected reflections written to file cu_marc002_0m.hkl Estimated minimum and maximum transmission: 0.4614 0.7538 The ratio of these values is more reliable than their absolute values! Additional spherical absorption correction applied with mu*r = 0.2000 Lambda/2 correction factor = 0.00150